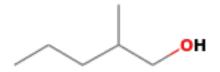

Quiz 12 Chemical Engineering Thermodynamics April 1, 2021

Yim et al.* studied the vapor liquid equilibria of 2,3-butanediol (2,3-BDO) in mixtures with 2methyl-1-pentanol. 2,3-BDO is produced through bioconversion (fermentation) from agricultural waste. 2.3-BDO is seen as a promising carbon neutral feedstock for the chemical industry. It is separated from aqueous dispersions by liquid extraction using 2-methyl-1pentanol and the binary mixture must be distilled under vacuum to produce pure 2,3-BDO. As an example of uses for 2,3-BDO, it can be easily converted to butadiene to make tires and other value added rubber products. Yim et al.* used UNIQUAC and NRTL (we will study these next week) to model the activity coefficients for this binary mixture with good results. In this quiz we will compare these results with a much simpler two-parameter Margules model for Lim et als.* 80kPa (0.8 bar) data using the Antoine parameters from the NIST webbook (given below for T in K and P in bar). You can use the GammaFit.xls spreadsheet for this calculation. You will need to unprotect the tabs and delete cells not used as well as modify some of the calculations to include only the cells you are using. Using these Margules coefficients we will recreate the 80kPa curves in Figure 3 below and compare with the data, reproducing the black lines shown in Figure 3 for 80kPa. We will also calculate the difference in v_1 values between calculated and measured based on the measured x_1 values and make a plot similar to Figure 6 below for the 80kPa data to assess the difference between UNIQUAC and the two-parameter Margules model.

Fig. 3. Experimental and calculated T-x-y diagram for the 2-methyl-1-pentanol (1) + 2,3-butanediol (2) system using NRTL and UNIQUAC: △, 101 kPa; ◆, 80 kPa; ▼, 60 kPa; ■, 40 kPa; −, calculated data by NRTL; −-, calculated data by UNIQUAC.

Fig. 6. Deviations of experimental vapor composition from calculated values using UNIQUAC model for 2-methyl-1-pentanol (1) + 2,3-butanediol (2) system: \triangle , 101 kPa; \diamondsuit , 80 kPa; ∇ , 60 kPa; \blacksquare , 40 kPa.


*Yim J-H, Kim H J, Oh JJ, Lim JS, Choi KY, *Isobaric vapor-liquid equilibria for two binary systems (2-methyl-1-pentanol + 2,3-butanediol and 3-methyl-1-butanol + 2,3-butanediol) at (40, 60, 80, and 101) kPa Fluid Based Equilibria* **530** 112897 (2021)

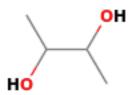
a) Use the Yim et al.* data in the attached spreadsheet, the Antoine coefficients given below and the GammaFit.xls spreadsheet to calculate the two Margules coefficients, A_{12} and A_{21} . You will need to change the units in the spreadsheet to match the NIST Antoine equation and the Yim et al.* data. Note that **80** kPa = **0.8** bar. Use the 'T-x-y fit P' tab. Report

- A_{12} and A_{21} , give a pdf of the spreadsheet, and explain how this tab operates by listing the steps and giving the equations that it uses.
- b) Use the '*T-x-y Calc T*' tab in *GammaFit.xls* to calculate the bubble point composition and temperature. Explain how this tab works and give the equations it is using.
- c) Give the plot from the '*T-x-y Plot*' tab, explain what is being plotted (from which spreadsheets and what information) and compare it with Yim et al.* Figure 3.
- d) In a new tab (if you change cells much in existing tabs strange things can happen since some calculations are done in invisible cells) paste the x- and y-experimental and y-calculated parameters from the 'T-x-y Calc T' tab and calculate Δy_1 . Make a plot similar to Figure 6 of the difference between the experimental y_1 and the calculated y_1 for each of the temperatures. Provide a pdf of this plot.
- e) Glance at the Wikipedia pages for UNIQUAC and NRTL (or alternatively Chapters 12 and 13) and give a two to three sentence explanation for what is not accounted for in the two-parameter Margules model that improves the fit for the UNIQUAC and NRTL models used by Yim et al.* (Don't spend more than 10 minutes on this unless you find it compelling. In that case you should look for a job at Aspen or ChemCAD.)

Turn in a pdf of your excel spread sheets and the plots of parts c and d. As well as answers to the questions.

Component (1)

2-methyl-1-Pentanol Formula: C₆H₁₄O Molecular weight: 102.1748


Antoine Equation Parameters

log₁₀(P) = A - (B / (T + C)) P = vapor pressure (bar) T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K)	Α	В	С	Reference	Comment
298 423.	6.198	2625.143	3.181	Hovorka, Lankelma, et al., 1938	Coefficents calculated by NIST from author's data.

Component (2)

2,3-Butanediol Formula: C₄H₁₀O₂ Molecular weight: 90.1210

Antoine Equation Parameters

 $log_{10}(P) = A - (B / (T + C))$

P = vapor pressure (bar)

T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K)	erature (K) A B C		C	Reference	Comment					
317 455.	6.07439	2616.746	-24.565	Stull, 1947	Coefficents calculated by NIST from author's data.					

ANSWERS: Quiz 11 Chemical Engineering Thermodynamics March 25, 2021

a) Use the Yim et al.* data in the attached spreadsheet, the Antoine coefficients given below and the GammaFit.xls spreadsheet to calculate the two Margules coefficients, A_{12} and A_{21} . You will need to change the units in the spreadsheet to match the NIST Antoine equation and the Yim et al.* data. Note that 80 kPa = 0.8 bar. Use the 'T-x-y fit P' tab. Report A_{12} and A_{21} , give a pdf of the spreadsheet, and explain how this tab operates by listing the steps and giving the equations that it uses.

Γ-x-y fit Pre						Margules E							
Jsing Modif	fied Raoult's	Law			Sheet must	be unprote	ected to use	Solver					
JSE THIS S	SPEADSHE	ET TO FIT T	-X-Y DATA	or enter dat	a for literat	ure fit. (Plot	tting is comp	oleted from '	"T-x-y Calc 1	Γ").			
nstructions	:	1) provide s											
		Be carefu	Il to match th	e Antoine co	efficients wit	th the logarit	hmic form (ba	ase 10 or bas	se e) and unit	s of P ^{sat} .			
Note: cell re	ferences	2) Enter dat											
in instructions are		If fitting da		Objective	Function								
utdated if r	ows or	3) Set initial	guesses for	activity mode	el parameter	s in D18 and	d E18.				0.00		
olumns are	added	4) Unprotec	t sheet. Add	or delete cal	culation row	s as necess	ary.						
r deleted.		5) Data Ar	nalysis <u>S</u> olv	er Minimi	ze L8 by adj	usting D18:	E18. Plot is g	enerated af	ter completi	ng T-x-y Calc	Т.		
		6) Protect sheet when done to avoid inadvertent changes.											
		7) Printing: I	By default, E	xcel will wan	t to include t	o about row	61 since it is:	n't empty.					
		To overri	de the defaul	t, highlight the	e desired pri	int range, the	en choose File	ePrintCli	ck the 'Selec	tion' radio butto	on.		
		8) See the I	NSTRUCTIO	ONS worksho	et for hints	on updating	the plot for ne	ew data sets.					
							Antoine Coe	fficents		Calculated			
Sys	tem Compon	ents	Para	ameters to ac	ljust		Α	В	С	T ^{sat} (K)			
1) 2-methy	l-1-Pentanol		A ₁₂	A ₁₂ A ₂₁ P(Bar)		1	6.198	2625.143	3.181	413.85			
2) 2,3-Buta	nediol		0.4554661	0.0553139	0.8	2	6.07439	2612.746	-24.565	447.94			
				<optio< td=""><td>nal></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></optio<>	nal>								
ι ₁	X ₂	Υ1, calc	Y2,calc	y _{1,expt}	y _{2,expt}	y _{1,calc}	y _{2,calc}	T _{expt}	P ₁ ^{sat}	P ₂ ^{sat}	P _{calc}	(P _{error}) ²	
0	1	1.5769082		0	1	0		446.8	2.31	0.77	0.77	0.0	
0.0164	0.9836	1.5341114	1.0002266	0.0545	0.9455	0.0716907	0.9283093	445.4	2.22	0.73	0.78	0.0	
0.0547	0.9453	1.4446722	1.0024321	0.1723	0.8277	0.2029654	0.7970346	442.6	2.04	0.67	0.79	0.0	
0.1325	0.8675	1.300778	1.0132467	0.347	0.653	0.3789127	0.6210873	438	1.77	0.57	0.80	0.0	
0.2156	0.7844	1.1901463	1.032261	0.4787		0.5003553	0.4996447	434.3	1.58	0.50	0.81	0.0	
0.3263	0.6737	1.0922059	1.0653413	0.6074		0.6149627	0.3850373	430.2	1.38	0.43	0.80	0.0	
0.4994				0.7533		0.7480909		425.2	1.17				
		0.9972427		0.8129	_	0.8064034	0.1935966	423	1.09				
0.5896		0.9912638	1.1535133	0.9024	0.0976		0.0974893	419	0.95				
0.5896 0.7609	0.2391	0.9912638	1.1000100					4470	0.00	0.00	0.00	0.4	
		0.9912638		0.9434		0.9423973	0.0576027	417.3	0.90	0.26	0.80	0.0	
0.7609	0.1544		1.1364472	0.9434 0.9858				417.3 415.1	0.90		0.80	0.0	

This tab calculates the bubble point temperature and compositions y_i , using the x_i values, P^{sat} (calculated from the Antoine equation using the generated T_{bp}) and P. It calculates P_{calc} from

$$P_{calc} = \sum x_i \gamma_i P_i^{sat}$$

and adjusts A_{12} and A_{21} until $(P_{calc} - P)^2$ reaches a minimum. γ_1 is

calculated from

$$\ln \gamma_1 = x_2^2 \left[A_{12} + 2(A_{21} - A_{12})x_1 \right]; \text{ similarly } \ln \gamma_2 = x_1^2 [A_{21} + 2(A_{12} - A_{21})x_2]$$

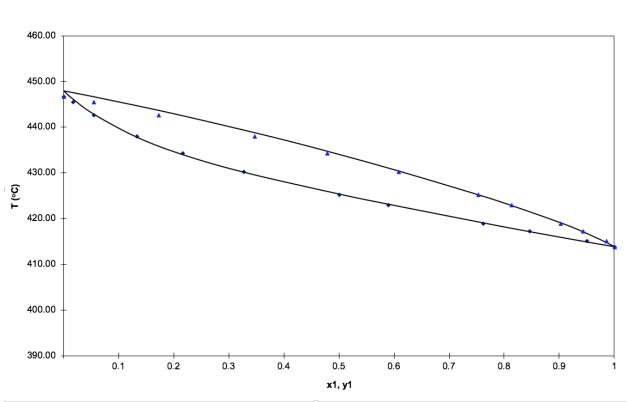
b) Use the '*T-x-y Calc T*' tab in *GammaFit.xls* to calculate the bubble point composition and temperature. **Explain how this tab works** and **give the equations it is using**. Turn in a **pdf of the spreadsheet**.

This is a bubble point temperature calculation. It uses the A_{12} and A_{21} parameters determined in part a to calculate γ_1 from

$$\ln \gamma_1 = x_2^2 \left[A_{12} + 2(A_{21} - A_{12})x_1 \right]; \text{ similarly } \ln \gamma_2 = x_1^2 [A_{21} + 2(A_{12} - A_{21})x_2]$$

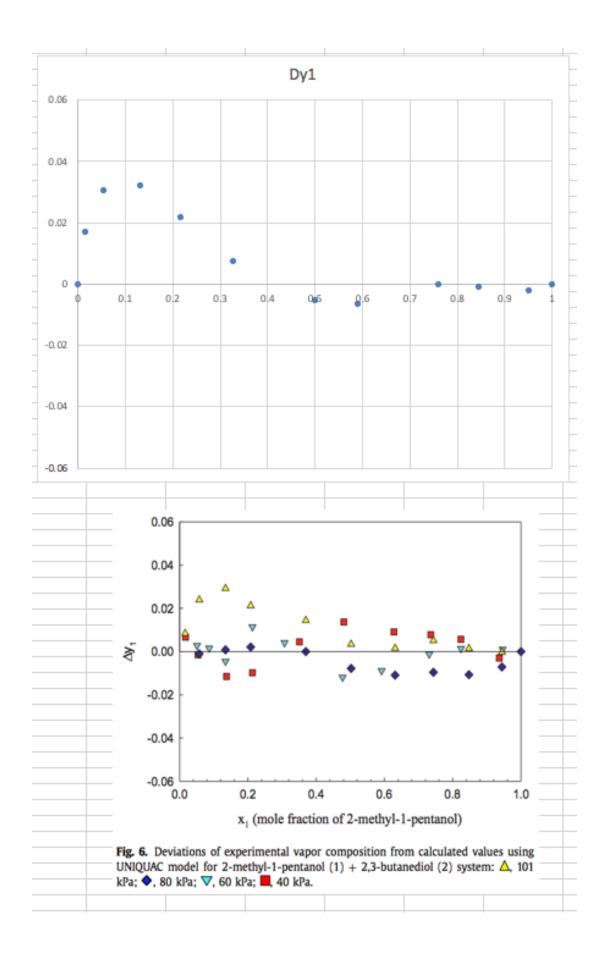
These values are used with

$$P_{calc} = \sum_{i} x_i \gamma_i P_i^{sat}$$


To calculate $P_{\rm calc}$. Rather than compare the square of the difference with P, a better minimization is found using $\Sigma \log(P_{\rm calc}/P)$ which equals 0 when $P_{\rm calc}/P = 1$ and varying 1/T rather than T. These are used since $P^{\rm sat}$ is related to $\exp(-E_a/kT)$ by the Arrhenius Equation, so $\ln(P)$ should be linear in 1/T with $-E_a$ as the slope.

This yields T_{bp} . y_i are calculated using $y_i = x_i \gamma_i P^{sat}/P$.

T-x-y Bubb						Margules E									
	ified Raoult's					t be unprote									
USE THIS	SPREADSHE	ET TO CAL	CULATE BU	JBBLE TEM	PERATURE	S AFTER GA	AMMA PARA	AMETERS A	RE OBTAIN	ED.					
ALL DATA	IS ENTERE														
nstructions	3:									I in columns A	, E, F.				
						rs from litera									
Note: cell r	eferences	2) Enter 1/T	guesses for	r column K.	Usually betw	een 0.0036	(0°C) and 0.	00149 (400°	C). [For 100	°C, 1/T=0.002	27]				
in instructions are outdated if rows or		Enter val	ues ONLY w	here corresp	onding data	is listed.				Objective Function					
		3) <u>T</u> ools <u>F</u>	rotection !	Unprotect Sh	neet					5.645	53E-10				
columns ar	e added	4) Tools S	Solver Mir	nimize K9. S	et to adjust h	C23:(last K ro	ow containing	data).							
or deleted.			s demo it wo					, ,							
						e since they	are approxi	mately linear	ly related.						
			heet when d												
						all non-blank	rows.								
		To overri	de the defau	ılt, highlight t	the desired p	orint range, t	hen choose	FilePrint	Click the 'Se	election' radio	button.				
										plot for new d					
							Antoine Coe	efficents		Calculated					
Svs	tem Compon	ents	Pai	rameters to	use		Α	В	С	T ^{sat} (K)					
(1) 2-methyl-1-Pentano			A ₁₂	A ₂₁	P(bar)	1.00			3.181	413.85					
(2) 2,3-Butanediol			0.4554661	0.0553139	0.8	2.00	6.07439	2612.746	-24.565	447.94					
<u>,_, _,</u> _ Dut			2.1001001		nal>	2.00	0.01.700	2012.140	2-1.500						
X ₁	X ₂	Υ1. calc	Y2.calc	y _{1,expt}	y _{2,expt}	Y _{1,calc}	Y _{2,calc}	T _{expt}	T _{calc}	1/T	P, sat	P ₂ sat	P _{calc}	log(P _{calc})	[log(P _{calc} /P
-		1.5769082	12,caic 1		Jz,expt 1				447.93573		2.1			0.0969058	
0.0164			1.0002266			0.0714774				0.00139011	2.27			0.0969132	
0.0547		1.4446722		0.1723		0.2028047				0.00139665				0.0969092	
0.1325		1.300778		0.347		0.3790809				0.00140651	1.76			0.0969021	
0.2156		1.1901463		0.4787		0.5006673				0.00141411	1.56			0.0969114	
0.3263			1.0653413			0.6150065				0.00142185				0.0969043	
0.4994	0.5006	1.0140802	1.1204307	0.7533	0.2467	0.7479413	0.2520587	425.20	425.37485	0.00143159	1.18	0.3			4.946E-11
0.5896	0.4104	0.9972427	1.1427131	0.8129	0.1871	0.8063075	0.1936925	423.00	423.13307	0.0014362	1.10	0.3	3 0.80	0.09691	1.494E-18
0.7609	0.2391	0.9912638	1.1535133	0.9024	0.0976	0.9024804	0.0975196	419.00	419.07241	0.00144462	0.96	0.2	8.0	0.0969057	1.882E-11
0.8456	0.1544	0.9947389	1.1364472	0.9434	0.0566	0.9424384	0.0575616	417.30	417.14318	0.00144866	0.90	0.2	6 0.80	0.0968988	1.265E-10
0.9499	0.0501	0.9992354	1.0899029	0.9858	0.0142	0.9836141	0.0163859	415.10	414.87406	0.00145344	0.83	0.2	4 0.80	0.0968983	1.368E-10
1	0	1	1.0568723	1		1	0	413.90	413.84598	0.00145561	0.80	0.2	3 0.80	0.0968996	1.075E-10
								For each ::d	the source	T in found to		amma Da-t	anual ta C C C		
										T is found to					
										int temperatu			are used in t	1	
								DEW POINT IS	uns temper	ature and the	experimenta	ı xı values			


c) Give the plot from the '*T-x-y Plot*' tab, explain what is being plotted (from which spreadsheets and what information) and compare it with Yim et al.* Figure 3.

T-x-y fit

The points are the input data for x and y. The top line is the bubble point temperature and composition from part b. The bottom line is the bubble point temperature from part b versus the experimental x1 values for the dewpoint.

d) In a new tab (if you change cells much in existing tabs strange things can happen since some calculations are done in invisible cells) paste the x- and y-experimental and y-calculated parameters from the 'T-x-y Calc T' tab and calculate Δy_1 . Make a plot similar to Figure 6 of the difference between the experimental y_1 and the calculated y_1 for each of the temperatures.

e) Glance at the Wikipedia pages for UNIQUAC and NRTL (or alternatively Chapters 12 and 13) and give a two to three sentence explanation for what is not accounted for in the two-parameter Margules model that improves the fit for the UNIQUAC and NRTL models used by Yim et al.* (Don't spend more than 10 minutes on this unless you find it compelling. In that case you should look for a job at Aspen or ChemCAD.)

UNIQUAC and NRTL include local clustering of species that impacts the entropy of mixing. They also include specific chemical group contributions and differences between interactions in the vicinity of chemical species. They use many more than two parameters to describe the miscibility.